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Abstract

Purpose – This study aims to present compatible computational fluid dynamics procedure for
calculation of incompressible three-dimensional time-dependent flow with complicated free surface
deformation. A computer software is developed and validated using a variety of academic test cases.

Design/methodology/approach – Two fluids are modeled as a single continuum with a fluid
property jump at the interface by solving a scalar transport equation for volume fraction.
In conjunction, the conservation equations for mass and momentum are solved using fractional step
method. Here, a finite volume discretisation and colocated arrangement are used.

Findings – The developed code results in accurate simulation of interfacial flows,
e.g. Rayleigh-Taylor instability, sloshing and dambreaking problems. All results are in good
concordance with experimental data especially when there are two phases with high density ratio.

Research limitations/implications – Turbulence, which has great importance in a wide variety of
real world phenomena, is not considered in the present formulation and left for future researches.

Originality/value – Here, an integrated numerical simulation for transient interfacial flows is
presented. In this way, the pressure integral term in Navier-Stokes equation is discretised based on a
newly developed interpolation which results in non-oscillative velocity field especially in free surface.

Keywords Flow measurement, Numerical control, Density measurement, Simulation

Paper type Research paper

1. Introduction
Interfacial flows play a very important role in many physical processes in a variety of
domains. While nowadays the single-phase flow simulation tools are widely used both for
engineering and research purposes, the simulation of two-phase flow is still considerably a
complex problem. However, the continuous growth of computer power strongly helps
researchers to apply different formulations and to develop the CFD codes capable of
predicting such complex flows. This case is always divided into two main subproblems:

. Navier-Stokes and continuity equations or velocity and pressure distribution; and

. free surface modeling.

Methods for solving the Navier-Stokes and continuity equations are typically
categorized as:

. pressure-corrector schemes; and

. projection or fractional step schemes.

In pressure corrector methods like SIMPLE (Patankar and Spalding, 1972) and PISO
(Issa, 1986; Versteeg and Malalasekera, 1995), a pressure correction equation is solved

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0961-5539.htm

HFF
17,4

384

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 17 No. 4, 2007
pp. 384-404
q Emerald Group Publishing Limited
0961-5539
DOI 10.1108/09615530710739167



for several times in each time step to reach a divergence free velocity field. In contrast
with such iterative methods, in fractional step schemes a pressure or pseudo-pressure
Poisson equation is solved once in each time step to enforce continuity. Therefore, using
such schemes is preferable, especially in unsteady problems (Ferziger and Peric, 2002).

Fractional step methods which have been used widely over past two decades,
pioneered by Chorin (1968, 1969) based on Hodge decomposition. In the 1980s, several
second-order projection methods are proposed by Goda (1979), Kim and Moin (1985),
Van Kan (1986) and Bell et al. (1991). Accuracy of such methods were discussed by
Brown et al. (2001), resulted in introducing a modified scheme based on Bell et al.
(1991). This method has second-order time accuracy for both pressure and velocity.

On the other hand, the existing approaches for handling fluids interface (Muzaferija
and Peric, 1998) are:

. interface tracking or surface methods; and

. interface capturing or volume methods.

Interface tracking methods are characterized by an explicit representation of the interface.
In other words, the computational grid is moved and updated in each time step to have no
flow across it while satisfying force equilibrium on fluid at interface which are kinematic
and dynamic conditions, respectively (Ferziger and Peric, 2002). The common drawback
of this category is the inability to handle complicated deformations, e.g. overturning
waves. This problem leads to interface capturing methods where the interface is captured
as a part of the physical domain. One of the most interesting approaches in volume
methods is to solve an additional convection equation. This results in volume fraction
which implies the availability of two phases in each control volume (CV) for whole domain.
In discretisation of such a transport equation one encounters to face values which must be
estimated using an appropriate interpolation scheme. This interpolation must ensure both
boundedness and availability criteria (Ubbink, 1997) to have physical volume fraction
values. It means that, the value of a flow property in the absence of source or sink cannot be
higher or lower than prescribed on the boundaries of a cell. In addition, the amount of flow
convected over a face during a time step should be less than or equal to the amount
available in doner cell. Simple interpolations have some problem with transitional area
between two phases while introducing numerical diffusion (Leonard, 1991) or disobeying
the local boundedness (Leonard, 1979). There are some composite schemes which are
switching between their options according to the received signals about the current, to
have physical distribution of fluids in whole domain (Ubbink and Issa, 1999; Dendy et al.,
2002). Compressive interface capturing scheme for arbitrary meshes (CICSAM) (Ubbink
and Issa, 1999) is a promising method which appropriately retains the transitional region
between two phases while successfully establishes all criteria – especially mass
conservation which is the common drawback of volume methods – in comparison to other
composite interpolations (Panahi et al., 2005).

The objective of this study is simulation of the three-dimensional interfacial
flow with complex deformation of free surface. This subject is recently developed by
many researchers especially based on interface capturing methods (Scardovelli and
Zaleski, 1999; Jahanbakhsh et al., 2005) and used to simulate breaking waves (Chen
and Kharif, 1999; Biausser et al., 2004), green water (Fekken et al., 1999; Huijsmans and
Van Grosen, 2004), sloshing (Loots et al., 2004) and wave-structure interaction
(Yang et al., 2005).
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In this study, a finite volume solver is developed based on using CICSAM
interpolation for volume fraction transport equation and fractional step method for
velocity and pressure coupling. Complexity of flow and high density ratio of two
phases lead to appropriate discretisations treated innovatively in this paper especially
for pressure term.

Finally, computer software is developed based on the mentioned algorithm and
verified using Raleigh-Taylor instability, sloshing in a rectangular tank and dam
breaking problem with and without obstacle.

2. Numerical method
2.1 Governing equations
There is an approach in simulation of two-phase flow where different fluids are
modeled as a single fluid obeying the same set of governing equations, with the
different local identified volume fraction values a. Incompressible Navier-Stokes and
continuity equations are well-known and given by the equations:

›ui
›t

þ uj
›ui
›xj

¼ 2
1

r

›P

›xi
þ n

›2ui
›xj›xj

þ gi ð1Þ

›ui
›xi

¼ 0 ð2Þ

where ui is the velocity, P is the pressure, and n is the kinematic viscosity.
Local density r and viscosity n of the single fluid are defined as:

rcell ¼ ar1 þ ð1 2 aÞr2

ncell ¼ an1 þ ð1 2 aÞn2

ð3Þ

Subscripts 1 and 2 indicate two fluids (e.g. water and air), where a (volume fraction) is
the percentage of fluid 1 (e.g. water) available in cell and defined as follow:

a ¼

1 for cells inside fluid 1

0 for cells inside fluid 2

0 , a0 , 1 for transitional area

8>><
>>: ð4Þ

Reformulating the continuity equation (2) and using the definition of the single fluid
density, results in extracting a scalar transport equation for volume fraction a
(Spalding, 1974):

›a

›t
þ k7ðakuÞ ¼ 0 ð5Þ

2.2 Discretisation
Discretisation of the governing equations is considered by integration of the
momentum equation over a control volume it becomes as below:
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d

dt
V

Z
ku dV þ

A

Z
kuðkuknÞ dA ¼

A

Z
nk7kukn dA2

1

r
A

Z
Pkn dAþ

V

Z
kgdV ð6Þ

where ku is the velocity vector, n is the cell volume and A is the area around it.
The diffusion term (the first term in r.h.s. of equation (6)) is discretised using the

over-relaxed interpolation for velocity component ui (Jasak, 1996):

A

Z
nk7uikn dA ¼

Xn
f¼1

nf kAf ðk7uiÞf ð7Þ

where kAf is the CV face area vector.
Discretisation of the convection term (the second term in l.h.s. of equation (6)) needs

to the fluid velocity component on CV face ui-f as shown in equation (8):

A

Z
uiðkuknÞdA ¼

Xn
f¼1

ui2f Ff ð8Þ

where Ff ¼ kAf
kUf is the volumetric flux. The fluid velocity on CV face kUf must be

calculated separately in the colocated arrangement to avoid checkerboard pressure and
will be discussed later in the solution algorithm. Here, ui2 f is approximated using
gamma interpolation scheme (Jasak, 1996) based on normalized variable diagram
(NVD) (Leonard, 1991) concept:

ui2f ¼

ui2D for ~ui2D # 0 or ~ui2D $ 1

1

2
ðui2D þ ui2AÞ for k # ~ui2D , 1

1 2
~ui2D

2k

� �
uD þ

~ui2D

2k ui2A for 0 # ~ui2D , k

8>>>>>><
>>>>>>:

ð9Þ

Subscripts D and A stand for doner and acceptor cells determined for each CV’s face
according to the direction of flow as shown in Figure 1. In addition, ~fDand ~ff are
defined based on NVD as equations (10) and (11):

Figure 1.
Flow direction (arrow)

determines doner, acceptor
and upwind cells for each

CV’s face

y

x

z
U D Aflowf f f
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~fD ¼
fD 2 fU

fA 2 fU
ð10Þ

~ff ¼
ff 2 fU

fA 2 fU
ð11Þ

It must be mentioned that the Crank-Nicholson scheme is used for time discretisation of
diffusion and convection terms in momentum equation (6).

The pressure term (second term in r.h.s. of equation (6)) is discretised as equation (12):

A

Z
Pkn dA ¼

Xn
f¼1

Pf
kAf ð12Þ

Using the common linear interpolations (LI) for calculation of face pressure Pf, results in
severe oscillations in velocity field. This is of great importance, especially when there are
two fluids with high density ratio, e.g. water and air. Here a piecewise linear
interpolation (PLI) shown in Figure 2 is introduced and used forPf estimation. It is based
on a constraint for lines LAf and LBf which connect pressure values at CVs’ center PA and
PB to Pf as equation (13):

Slope of LAf

Slope of LBf

¼
rA

rB
ð13Þ

where rA and rB are the densities of CVs A and B, respectively.
Therefore, Pf can be estimated by using the pressure value at CVs’ center PA and PB

as well as equation (14):

Pf ¼ PAkþ PBð1 2 kÞ ð14Þ

k is the weighting factor and can be calculated as equation (15):

k ¼
rBdB

rAdA þ rBdB
ð15Þ

where dA and dB are distance from face center f to CVs’ center A and B, respectively
(Figure 2).

In order to show the effect of such an interpolation, the hydrostatic pressure
distribution along the near free surface cells (Figure 3(a)) is plotted in Figure 3(b).
In Figure 3(a) points and solid lines stand for CV’s centers and faces, respectively.

Figure 2.
PLI for CV’s face pressure
calculation

x 

y 
z 

PA

Pf

PB

A Bf
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Figure 4 shows the pressure distribution at CVs’ faces calculated by using LI and PLI.
It is obvious from Figure 4 that using LI results in non-physical pressure at CV’s face,
but PLI calculates the CV’s face pressure exactly which is zero for the face at x ¼ 0 m.
This difference effects on pressure integral of each CV consequently, as shown in
Figure 5. Although it seems that such a difference by using LI in comparison to PLI can
be neglected, dividing of pressure integral term by CV’s density (equation (6))
exaggerates this error, especially in the case of large density ratio of two phases and for
the CV next to the free surface in the light fluid (here at Z ¼ 0.5 m). Therefore, using
PLI restrains severe oscillations of the velocity field by better estimation of Pf.

Figure 4.
Pressure at CVs’ centers

and faces
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Finite volume discretisation of volume fraction transport equation (5) is based on the
integration over CV and time step:

Z tþdt

t
V

Z
›a

›t
dv

0
B@

1
CAdt þ

Z tþdt

t
V

Z
k7ðakuÞdV

0
B@

1
CAdt ¼ 0 ð16Þ

The first term in equation (16) is a common integral form and applying the Gauss
theorem on the second term results in:

atþdt
P 2 at

P

� �V
dt

þ
1

2

Xn
f¼1

atþdt
f Ftþdt

f þ
Xn
f¼1

at
f F

t
f

 !
¼ 0 ð17Þ

The time integral of the second term is discretised using Crank-Nicholson scheme.
Assuming a linear and small variation of Ff in small time step, results in using the most
recent value of it. Taking this into account, and rearranging of equation (17) yield to:

atþdt
P

V

dt
þ
Xn
f¼1

1

2
atþdt
f Ff ¼ SaP

ð18Þ

where the source term is:

SaP
¼ at

P

V

dt
2
Xn
f¼1

1

2
at
f Ff ð19Þ

One can see the face values af which must be approximated using an interpolation.
As aforementioned, simple interpolations leads to non-physical or too diffusive
volume fraction values. This leads to use a high order composite one. Most of
composite methods, typically switch between two high and low order interpolations

Figure 5.
Pressure integral
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to use their advantages. Here, the main distinctions are how and when they switch
between these schemes according to flow information.

CICSAM uses convection boundedness criteria (CBC) (Gaskell and Lau, 1988) and
ULTIMATE-QUICKEST (UQ) (Leonard, 1991) by introducing a weighting factor gf
(equation (20)) which takes into account the slope of the free surface relative to the
direction of motion. CBC is the most compressive scheme that stipulates robust local
bounds on ~af nevertheless does not actually preserve the shape of interface. Here UQ
uses for its ability to better preserving of interface shape. Based on NVD, normal face
value is obtained as follows:

~af ¼ gf ~af CBC
þ ð1 2 gf Þ ~af UQ

ð20Þ

Using the definition of equation (11) in equation (20), results in estimation of af, shown
in equation (18). This value contains all the information regarding to the fluid
distribution in the doner, acceptor and upwind cells as well as the interface orientation
relative to flow direction. To avoid non-physical a in highly skewed meshes, a
correction step is added to volume fraction calculation procedure and used in the
developed software which can be found in Ubbink and Issa (1999) by details.

2.3 Solution algorithm
Solving the volume fraction transport equations (18) and (19), results in calculation of
an effective fluid properties using equation (3). Here, this single fluid is used in
coupling of velocity and pressure fields by fractional step method of Brown et al.
(2001), which is a modified scheme based on Bell et al. (1991). The first step is solving
the momentum equation for the intermediate velocity ui* with the lagged pressure
gradient where physical velocity component ui

n is known from the previous time step:

u*i 2 uni
Dt

¼
1

2
H ðuiÞ

*
þ H ðuiÞ

n
h i

2
1

r
GiðP

n21=2Þ þ Ki ð21Þ

where:

H ðuÞ ¼

A

Z
nk7uikn dA2

A

Z
uiðkuknÞ dA ð22Þ

GiðPÞ ¼

A

Z
Pni dA ð23Þ

Ki ¼

V

Z
gi dV ð24Þ

Here, u
*
jBoundary ¼ unþ1jBoundary boundary condition is used for equation (21) which

keeps the second order time accuracy for ui* (Brown et al., 2001).
The next step is solving a Poisson equation for pressure like variable f with zero

gradient boundary condition:
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I
A

1

r

›fnþ1

›n
dA ¼

1

Dt

I
A

u*i dA ð25Þ

Especial care must be taken in calculation of the r.h.s. integral of equation (25) for
boundary CVs (Kim and Choi, 2000). In other words, the physical face velocity kU

n

f
calculated in the previous time step must be used on the boundary rather than the
intermediate one:

1

Dt

I
A

u*i dA ¼
f�Boundary

X
kU
*
f
kAf þ

f[Boundary

X
kU
n

f
kAf x ð26Þ

where the intermediate face velocity kU
*
f is calculated by the linear interpolation of cell

center intermediate one.
By using the gradient of f, the physical velocity component is calculated as

equation (27):

unþ1
i ¼ u*i þ

Dt

r
Gðfnþ1Þ ð27Þ

Decoupling of velocity and pressure fields is the common problem in colocated
arrangement which is used in current study. This leads to the especial treatment of face
velocities as well as momentum interpolation scheme (Zang et al., 1994; Kim and Choi,
2000). Here, equation (28) is used to overcome this problem:

Unþ1
f ¼ U*

f þ
Dt

r

›fnþ1

›n
ð28Þ

Finally, the pressure is updated as below:

P nþ1=2 ¼ P n21=2 þ fnþ1 2
nDt

2
72fnþ1 ð29Þ

The last term in equation (29), guarantees the second order time accuracy of pressure in
contrast with Bell et al. (1991).

3. Test cases and numerical results
In order to assess the feasibility, computer software is written according to above
mentioned procedure. This is summarized in some conclusion about the accuracy,
efficiency and robustness of such an algorithm.

3.1 The two-dimensional Rayleigh-Taylor problem
When a horizontal layer of heavy fluid overlies a layer of light fluid in the presence of
vertical gravitational field, the interface between the two fluids is unstable. In this case,
any perturbation grows with time. This phenomenon is known as the Rayleigh-Taylor
problem and related computations have been performed by Puckett et al. (1997), Kelecy
and Pletcher (1997) and later by Popinet and Zaleski (1999).

3.1.1 Rayleigh-Taylor problem with interface perturbation. Here, the interface
between two phases is perturbed according to Figure 6. A rectangular domain of 1 m
wide, 4 m high, surrounded with wall is discretised using 64 £ 256 cells.

The numerical results have been compared to other one obtained by Popinet and
Zaleski (1999) in Figure 7 which shows a good concordance.
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3.1.2 Rayleigh-Taylor problem with velocity perturbation. As another kind of
perturbation, two viscous incompressible fluid layers with a density ratio of two
and a uniform kinematic viscosity in a rectangular domain is investigated as shown in
Figure 8. A single wavelength perturbation is introduced by using the following
velocity field which is adopted from the work of Kelecy and Pletcher (1997):

Figure 6.
Illustration of

Rayleigh-Taylor problem
with interface

perturbation
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u

Vr
¼

a sin
px

L

� �
exp 2

pjyj

L

� �
y
L
. 0

2a sin
px

L

� �
exp 2

pjyj

L

� �
y
L
, 0

8>>>><
>>>>:

v

Vr
¼ a cos

px

L

� �
exp 2

pjyj

L

� �
a ¼

pADy

2VrL

ð30Þ

where Vr ¼
ffiffiffiffiffiffi
gL

p
, A is perturbation amplitude and Dy is a representative mesh

increment in the vertical direction. This perturbation corresponds to a sinusoidal
perturbation of wavelength 2L.

To verify the accuracy of current study, the problem is simulated for Re ¼ ðrrV rLÞ=
mr ¼ 28:3 where all variables replace from the heavy fluid. Results show a good
concordance by Kelecy and Pletcher (1997) (Figure 9). Here, a non-dimensional time
T ¼ t

ffiffiffiffiffiffiffiffi
g=L

p
is used.

The effect of Re number on the evolution of free surface is shown in Figure 10 for the
same time. In all cases, the initial perturbation causes the light fluid to rise along the
left boundary and the heavy fluid to sink along the right boundary. During the early
times, it is considered that the displacement of the interface is nearly symmetric.
Anyway, the roll up of the interface is much more pronounced for higher Re number
due to the smaller influence of viscosity, which would tend to smooth out sharp
velocity gradients.

3.2 Sloshing
Sloshing of a liquid wave with a low amplitude under the influence of gravity has been
investigated (Tadjbakhsh and Keller, 1960) and used as a test to evaluate the interface
(Raad et al., 1995). The situation with an initialized quiescent fluid free surface is
shown in Figure 11, which is the same as used by Raad et al. The domain is discretised

Figure 8.
Illustration of
Rayleigh-Taylor problem
with velocity perturbation
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with 160 cells in the horizontal direction and 104 cells in the vertical direction. Slip and
zero-gradient boundary conditions are used for velocity and pressure at all boundaries,
respectively. In this case, fluid begins to slosh solely under the influence of constant
gravitational field. The theoretical period of sloshing of the first mode is
T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðkhÞ

p
¼ 0:3739 s, where k is the wave number and h the average

fluid depth (Raad et al., 1995).
Initially the whole system is at rest. After a quarter of a period the potential energy

of the system is transferred to kinetic energy and the velocities reach their maximum.

Figure 9.
Rayleigh-Taylor at

different times; (a) present
study; (b) Kelecy and

Pletcher (1997)

T = 1.8 T = 4

(a) (b) (a) (b)

Figure 10.
Effect of Re number in
Rayleigh-Taylor at the

same time of T ¼ 4.8

Re = 28.3 Re = 70 Re = 283
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After a half period, all the kinetic energy is transferred back into potential energy with
the velocity almost back to zero (Figure 12). Also, Figure 13 shows plots of the position
of the interface at the left boundary against time. The frequency corresponds with the
theoretical one, so do the amplitudes of even periods.

3.3 Dam breaking
A classical experiment used in the validation of mathematical modeling of two-fluid
system, is the collapse of liquid column. Figure 14 shows the sketch of primary
experimental setup (Martin and Moyce, 1952). There are some secondary data such as
reduction of the column height (z) and progression of column front (x) to validate
numerical calculations. The specific geometry employed in the present work is

Figure 11.
Initial geometry of the
sloshing problem
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sloshing
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shown in Figure 15 where a ¼ 0.05715 m. The calculation is made by using a uniform
grid of 40 £ 160 and 20 £ 20 £ 80 cell for two- and three-dimensional cases,
respectively.

No-slip boundary condition for velocity and zero-gradient condition for pressure are
used on whole walls. The snapshots of free surface motion are plotted in Figures 16
and 17 for such cases. The surge front and the column height (in three-dimensional

Figure 13.
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Figure 16.
Free surface motion in
two-dimensional case
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Figure 17.
Free surface motion in
three-dimensional case
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case at the symmetry plane) are plotted in Figures 18 and 19. Also plotted in these
figures are the experimental data of Martin and Moyce (1952).

Figures appear that the numerical results are in good agreement with experiment.
However, the simulation seems to be ahead of the physical data with respect to the
position of the leading edge. One implies that the unsynchronized start of simulation
and physical data leads to such a shift (Croce et al., 2004). In addition, the important
point is that the current simulation ignores the effect of surface tension which exists in
physics. Besides, there is very little difference between two- and three-dimensional
simulations, which is clear in such plots. It is probably due to the high Reynolds
number for this particular case, which reduces the influence of side walls on the flow

Figure 18.
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field at the symmetry plane. It seems that the surge front and the column height are
changing linearly a bit after the beginning of the collapse.

A more interesting version of dam breaking occurs when a small obstacle is placed
in the way of the water front as shown in Figure 20 (Koshizuka et al., 1995). In this case,
considering the flow of both water and air is important because air is trapped in water.
Here, the trapped-air is subjected to a large buoyancy force and tends to rise up. This is
obvious from Figure 21 which shows the shape of a water column at three time
instants. Comparison of numerical data and experimental photos of Figure 21 shows a
good concordance.

4. Conclusion
The preceding sections have described the development of a three-dimensional finite
volume two phase flow solver. The algorithm employs the fractional step method to
couple both velocity and pressure fields in a transient flow. An appropriate interface
capturing scheme is selected for simulation of the complex deformations. To discretise
the free surface scalar transport equation which calculates the volume fraction
distribution, a high resolution differencing scheme is applied to avoid non-physical
values. The use of a consistent formulation in both the liquid and gas regions permits the
free surface to be automatically captured as a discontinuity in the density and viscosity,
and thereby eliminates the need for special free surface tracking procedure, although
this discontinuity must be treated in a special manner. A new pressure interpolation
method is presented for this purpose which strongly eliminates velocity oscillation at
interface, especially when there are two fluids with high density ratio, e.g. air and water.

An extensive set of validation calculations were carried out for two-and
three-dimensional test cases and comparison of the results shows a reasonably good
agreement between numerical and experimental data.

Although the presented method has been tested by using simple geometries, the
formulation is of sufficient generality to permit free surface flows in more complex
geometries to be computed.

Figure 20.
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